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Self-organized defect strings in two-dimensional crystals
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Using experiments with single-particle resolution and computer simulations we study the collective behavior
of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings,
terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through
the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases
exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By
monitoring the separation of the dislocations at the end points, we measure their effective interactions with high
precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the
dislocation interaction in terms of continuum elasticity theory.
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The plasticity and mechanical strength of solids is essen-
tially governed by the dynamics of dislocations, topological
defects generated during plastic deformation [1]. Recent
research has focused on the properties and effects of such
defects in novel two-dimensional nanomaterials. In graphene,
for instance, dislocations generated, say, by irradiation can
significantly alter the electronic and mechanical properties
of the material, and the ability to control them will be key
for technological application [2–4]. The interaction between
antiparallel dislocations also plays a central role in two-
dimensional melting, which, according to the Kosterlitz-
Thouless-Halperin-Nelson-Young theory [5], is mediated by
the formation and subsequent dissociation of dislocation
pairs leading to the loss of quasi-long-range translational
order [6–9]. Due to the remarkable experimental advances
of recent years, such as the development of optical tweezers
and confocal microscopy [6,10–15], the direct observation of
the structure and dynamics of defects is now possible with
single-particle resolution. However, measuring the interaction
of dislocations experimentally for a wide range of distances
and angles is challenging, mainly due to the lack of a
systematic way to generate and control dislocations beyond
their spontaneous formation and annihilation [6].

In this Rapid Communication, we study the dynamics
of self-organized defect strings and exploit their properties
to measure the interaction of dislocations using a planar
crystal of colloidal particles with tuneable interactions as
the model system. We confirm experimentally, as shown in
Fig. 1, that multiple vacancies introduced artificially into
the system rapidly cluster, driven by the attractive defect
interaction [16–18]. Furthermore, we confirm, that the vacancy
clusters arrange into linear strings which cannot be understood
from linear elasticity theory [18]. These defect strings are
terminated by two dislocations of antiparallel Burgers vectors
and can be considered the two-dimensional analogs of the
prismatic dislocation loops [19–22] forming in irradiated
three-dimensional materials. In contrast to dislocation pairs
forming spontaneously by thermal excitation, the dislocations
resulting from defect clustering do not annihilate due to the
geometrical constraints imposed by the defect string. While

the separation of the dislocations perpendicular to the Burgers
vectors is fixed and depends on the number of vacancies in the
string, the dislocations are mobile in the parallel direction.
As discussed below, we use the statistics of this motion,
collected for various string lengths, to reconstruct the complete
interaction Hamiltonian of dislocation pairs with antiparallel
Burgers vectors. In particular, we find an interaction of
double-well form, as predicted by elasticity theory.

Our system consists of a monolayer of superparamagnetic
colloidal particles confined by gravity to a flat water-air inter-
face [23,24]. A magnetic field of strength H perpendicular to
the interface induces magnetic dipole moments of magnitude
χH , leading to the dipolar pair interaction

βv(r) = 33/4�

(2π )3/2
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Here, β = 1/kBT with the Boltzmann constant kB and temper-
ature T , r is the particle-particle distance, a is the lattice spac-
ing of the perfect crystal and � = β(μ0/4π )(χH )2(πρ)3/2,
where μ0 is the permeability of vacuum and ρ is the area
density of the crystal. The dimensionless parameter �, which
acts as an inverse temperature and can be tuned by varying the
magnetic field, completely determines the structural properties
of the system. Vacancies are generated by a fiber-coupled
optical tweezer, where the objective can be moved in x, y,
and z directions for distances larger than the field of view.
The colloids are trapped in the laser focus for moderate field
strength, but for high field strength (500 mW, 100× tweezer
objective, NA 0.73, Ar+ laser) light pressure is strong enough
to push particles through the interface, removing them from
the monolayer. We also study the vacancy strings using NV T

Monte Carlo (MC) simulations with local trial moves.
The sequence in Figs. 1(a)–1(f) illustrates the formation

of a defect string with N = 9 vacancies in the experiment.
Dislocations are identified as pairs of five and seven coor-
dinated particles identified with Voronoi construction. Even
though there are nine vacancies present in the system, only
two dislocations remain in the equilibrated string configuration
[see Fig. 1(f)]. The region between the two dislocations
is a prefect crystal, in which each particle has exactly six
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FIG. 1. (Color online) Formation of a defect string with N = 9
vacancies observed in our experiments. (a)–(b) The initial configura-
tion is created by removing 9 particles with strong laser pulses from
a perfect triangular colloidal crystal. Along the sequence (c)–(f),
the vacancies gradually coalesce and annihilate, eventually leaving
behind a pair of dislocations with Burgers vectors of opposite
direction. Colors distinguish particles with 8 neighbors (blue), 7
neighbors (pink), 6 neighbors (gray), and 5 neighbors (yellow).
After about 6 min the vacancies have clustered into a vacancy
string terminated by two dislocations. This behavior is in perfect
agreement with Monte Carlo simulations performed at the conditions
of the experiments. (f) To follow the dynamics of the string in detail
we monitor the position of the two dislocations, each of which
corresponds to a 5–7 coordinated particle pair and is indicated by a
white T symbol. The dislocations diffuse along parallel lattice lines,
indicated by dashed lines, parallel to the Burgers vectors b1 and b2.
While the perpendicular separation n between the dislocations is fixed
by the number N of vacancies introduced into the system, the parallel
distance s changes as the dislocations move under the influence of
their effective interaction.

neighbors. This remarkable formation of linear strings rather
than defect clusters can be understood from the complex
interactions of vacancies, which cannot be written in terms
of pair interaction [17,18]. We note that through comparison
with the underlying ideal lattice, one can locate the entire
string of vacancies that connects the dislocations at the string
endpoints [18].

Analyzing trajectories obtained from our video microscopy
experiments and computer simulations in terms of defect
positions, we find that defect strings propagate through the
system in a sequence of fast gliding motions and rare rotations
(see Fig. 2). During the gliding phase, the vacancies and
dislocations at the string endpoints move in a direction that
is parallel to the Burgers vectors of the dislocations and
coincides with one of the three symmetry axes of the crystal.
In the direction perpendicular to the direction of motion,
distances between defects remain constant. As a consequence,
the string endpoints move on parallel lines, separated by N

lattice rows. In this gliding phase, the motion of the defect
string can be viewed as the diffusion of the two endpoint
dislocations along parallel lines under the influence of their
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FIG. 2. (Color online) Dynamics of defect strings. Left: Trajec-
tory obtained from the experiment of the dislocation positions, shown
as red and blue dots. Dislocations first move along two parallel lines
in one of the main lattice directions and then change their direction
of motion during a rapid reorientation event that turns the Burgers
vectors of the dislocations by π/3. This combination of gliding and
rotation is consistent with computer simulations (right). As discussed
below, rotation events can only occur at particular points [see Fig. 4
(top right panel)]. The long-time diffusion of defect strings of various
lengths from N = 3 to N = 9 is depicted as an inset. Here, each point
corresponds to the center of mass of the two dislocations indicating
the position of the string. While the diffusion constant is roughly
independent of N , the rotation probability decreases exponentially
with N leading to long gliding periods for large N (green).

mutual effective interaction. In the direction of motion the
dislocations interact attractively at large distances, such that
the two dislocations can diffuse only as a coupled pair. On short
time scales, the dislocations thus diffuse freely with diffusion
constant Ddis, while at long time scales the diffusion of the
dislocations is governed by the diffusion constant Dstring =
Ddis/2 [26]. This allows one to extract the diffusion constant
of individual dislocations from the diffusion of the string.
Diffusion constants obtained from computer simulations and
experiments, depicted in Fig. 3, agree within the statistical
accuracy of the results. Remarkably, the diffusion constant is
independent of the string length for N > 5, corroborating the
view of the string motion as the diffusion of two coupled
dislocations. Thus, the number of vacancies in the string
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FIG. 3. (Color online) Diffusion constant Dstring of vacancy
strings as a function of defect number N . Experimental results (blue
solid line) are shown together with results of the simulations (red
dashed line). In the simulations, averages and error bars are calculated
from 12 blocks of 4 × 106 MC sweeps each. The inset shows the
rotation rate krot [25] of vacancy strings as a function of N . A fit of
k(N ) ∝ exp(−βNea)/N , shown as a dashed line, yields an activation
energy per defect of ea = 1.13kBT .
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influences the time at which the long-time diffusion regime
is reached, but not the diffusion constant itself [26].

The phases of facile gliding motion are interrupted by
rotation events that change the direction of motion of the dis-
locations, allowing the diffusion to become two dimensional.
Rotations can take place only at specific rotation points at
the intersections of the lattice lines indicated by dashed lines
in Fig. 4 (top right), along which the endpoint dislocations
have constant perpendicular distance. During such a rotation
event, which can be detected based on the directions of the
Burgers vectors or the sequence of dislocation positions, the
string changes from one of the three possible directions of
motion to another. Examples of two rotation events observed
in the experiments and computer simulations are shown in
Figs. 2(a) and 2(b) for experiment and simulation, respectively.
Since rotation events are rare, we could determine the rotation
rate reliably only for the long trajectories obtained from
our computer simulations [Fig. 2(b) inset]. The resulting
patterns of diffusion can be understood from the rotation
rate and the diffusion constant. As shown in the inset of
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FIG. 4. (Color online) Free energy β�F as a function of the
scaled distance x = 2s/(

√
3N ) in the direction of motion for defect

strings with lengths from N = 2, 3, 4, 5, and 9. Experimental results
(blue solid lines) are shown together with results of simulations (red
dashed lines) and the prediction of elasticity theory (black line)
[see Eq. (2)]. The top right inset depicts a color coded histogram
of vacancy locations for N = 8 and one string end at the origin
(blue dot). The vacancy string follows the same double-well pattern
with angle π/4 (dotted lines) as the endpoints. The relative distance
between dislocations (dashed lines) is constrained to six lines with
12 rotation points (green dots) where the string can change the
gliding orientation. These rotation points are the only points where
the constraint of perpendicular distance n is satisfied for two different
orientations. Results from computer simulations are obtained using
N = 3120 under periodic boundary conditions. Simulations carried
out with different system sizes indicate that finite-size effects can be
neglected.

Fig. 3, the rotation rate krot, defined as the number of rotation
events per second, decreases rapidly with string length. The
particular functional form of krot(N ) can be understood as
follows. The probability to observe a rotation at a given
time is the product of the probability to be at a rotation
point multiplied by the probability to change the direction
of motion at this point. The probability to be at a rotation
point decreases as 1/N simply because of the number of
locations available to the string endpoints is proportional to
N . At a rotation point, a string can change its direction by a
collective slip of two rows of N particles past each other in
the region between the endpoint dislocations. This collective
rearrangement involves an activation energy that increases
linearly with the string length, Ea = Nea . Including both
contributions to the rotation probability, one expects a rotation
rate krot(N ) ∝ exp(−βNea)/N . A fit of this expression to the
simulation results yields good agreement, as shown in the inset
of Fig. 3.

To explore the effective interaction between the two
dislocations located at the endpoints of the strings, we have
determined the probability P (s) of finding the dislocations
at distance s in the direction of motion [see Fig. 1(d)].
The probabilities P (s) are obtained by histogramming the
distances s along trajectories recorded in the experiments
and in the simulations. We ignore configurations in which
additional dislocation pairs arise through thermal fluctuations
(10–20% of the configurations) and assume that the sponta-
neous formation of additional dislocations does not influence
the defect string configuration. Therefore, neglecting these
multidislocation configurations does not affect the calculated
effective interactions given by F (s) = −kBT ln P (s). In Fig. 4,
effective interactions βF , displayed as a function of the scaled
coordinate x = 2s/(

√
3N ), are compared to the predictions of

elasticity theory for various string lengths N . The effective
interactions obtained from our experiments agree well with
the results of the computer simulations with deviations that
are most likely due to the limited statistics of the experimental
results.

For strings longer than N > 3, both experiments and
simulations yield effective interactions of double-well form
with minima at x = ±1 corresponding to s = ±√

3N/2, and
a central barrier at x = 0. As a consequence, for all string
lengths the defect strings are preferentially oriented at an
angle of π/4 with respect to the high symmetry directions,
and individual defects follow this π/4 pattern (see Fig. 4 top
right). The double-well form of the dislocation interaction and,
in particular, the surprising defect string alignment, differing
from the high symmetry directions of the hexagonal lattice,
can be rationalized in terms of continuum elasticity theory.
In two dimensions, two dislocations with Burgers vectors b1

and b2 and separated by R are predicted to interact with
energy βF = −(K/4π )[(b1 · b2) ln R − (b1 · R)(b2 · R)/R2]
[27], where K is Young’s modulus [28,29]. For a string of N

vacancies, the geometry of the dislocations can be described
by b1 = (−1,0), b2 = (1,0), and R = (s,N

√
3/2), yielding

the effective interaction

βF (x) = K

8π

(
1 − x2

1 + x2
+ ln

1 + x2

2

)
. (2)
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Note that this expression is valid for an isotropic system
irrespective of the symmetry of the underlying crystal lattice
to which no reference is made. The free energy of Eq. (2) is a
symmetric double well with minima at x = ±1 separated by
a barrier of height h = βF (0) = (K/8π )(1 − ln 2) located at
x = 0. Thus, the barrier height depends on Young’s modulus
K but not on the string length N . As can be seen in Fig. 4,
for sufficiently long defect strings the free energy obtained
from elasticity theory reproduces both the experimental and
numerical results to a remarkable extent. In particular, the
positions of the minima, which are related to the preferential
π/4 orientation of the strings, are predicted very accurately
by elasticity theory for N > 3. For short strings, elasticity
theory fails at short distances since the discrete lattice becomes
noticeable and for N = 2 the potential becomes a single well.
While the general shape of the free energy and the position
of the minima are predicted well by elasticity theory, the
predicted height of the barrier at x = 0 differs significantly
from the simulation results. Barrier heights obtained in our
simulations seems to converge to a constant value for growing
string length as expected from elasticity theory. This height,
however, exceeds the prediction of linear elasticity by almost
50%, possibly due to nonlinear elastic interactions.

In summary, we have used a combination of experiment
and computer simulations to characterize the motion and
interactions of defects in two-dimensional crystals with single-
particle resolution. We have found that vacancies introduced
artificially into the system coalesce into string-like clusters
that are almost as mobile as single vacancies. The dynamics of
these strings consists of long stretches of fast diffusive gliding

in one dimension punctuated by rotations at specific rotation
points. For rotations, a collective rearrangement that reorients
the dislocations terminating the vacancy string is needed.
From the statistics of dislocation positions tracked with video
microscopy we reconstruct the effective interactions between
dislocations in two dimensions and the double well predicted
by continuum elasticity. Based on our computer simulations,
we predict that analogous clustering phenomena occur for
interstitials introduced into two-dimensional crystals, provid-
ing another way to study defect clustering and dislocation
interactions in two-dimensional materials. In future work we
will study defect clustering and interactions in binary systems
as well as in monolayers on a substrate and in systems with
anisotropic interactions, which can be realized in our model
system by tilting the magnetic field controlling the interactions
between particles. In particular, it will be interesting to study
the influence of such defects on the mechanical properties
of the system. Approaches analogous to the ones used here
to explore defects in colloidal crystals could be applied to
directly probe interactions of defects generated by radiation
damage in two-dimensional nanomaterials such as graphene
or boron nitride sheets in high-resolution transmission electron
microscopy experiments [3].
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